metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Sai-Rong Fan,^a Hong-Ping Xiao,^b Li-Ping Zhang,^a Guo-Qiang Cai^a and Long-Guan Zhu^a*

^aDepartment of Chemistry, Zhejiang University, Hangzhou 310027, People's Republic of China, and ^bSchool of Chemistry and Materials Science, Wenzhou Normal College, Zhejiang Wenzhou 325027, People's Republic of China

Correspondence e-mail: chezlg@zju.edu.cn

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.004 Å R factor = 0.027 wR factor = 0.075 Data-to-parameter ratio = 11.4

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Poly[[aqua(1,10-phenanthroline- $\kappa^2 N, N'$)copper(II)]- μ -4-sulfonatobenzoato- $\kappa^2 O^4: O^1$]

The title compound, $[Cu(C_7H_4O_5S)(C_{12}H_8N_2)(H_2O)]_n$, a polymeric copper(II) complex, was obtained by the reaction of $Cu(NO_3)_2$ with potassium hydrogen 4-sulfobenzoate and 1,10-phenanthroline under hydrothermal condition. Each Cu^{II} atom displays a square-pyramidal geometry defined by three O atoms from one water molecule and two 4-sulfonatobenzoate ligands and two N atoms from one 1,10-phenanthroline ligand. The polymeric chains are linked into ladders by $O-H\cdots O$ hydrogen bonds.

Comment

In the past decade, numerous 1,4-benzenedicarboxylate (bdc) complexes have been extensively studied due to their potential applications as functional materials (Yaghi *et al.*, 2003; Ohmura *et al.*, 2003; Chisholm, 2003). However, complexes with 4-sulfobenzoate (sb), a ligand with a combination of sulfonate and carboxyl groups, remain few (Yuan *et al.*, 2001; Xiong *et al.*, 2001). The sulfonate group could exhibit very different coordination behavior compared to the carboxyl group (Zheng *et al.*, 2003; Wang *et al.*, 2004; Starynowicz, 2000). We report here a one-dimensional coordination polymer with the sb ligand, [Cu(sb)(1,10-phen)(H₂O)]_n (1,10-phen is 1,10-phenanthroline), (I).

The Cu atom in (I) has a square-pyramidal geometry defined by one O atom from one water molecule, two N atoms from one 1,10-phenanthroline ligand, and two O atoms from two sb ligands. Atoms O1, O6, N1, and N2 occupy the basal plane, while atom O5ⁱ [symmetry code: (i) x, y - 1, z] occupies the apical position (Fig. 1 and Table 1). The coordination geometry of (I) is similar to that of [Cu(sb)(2,2'-bipy)(H₂O)]₂, (II) (Fan *et al.*, 2004). The Cu–O(carboxylate), Cu–N, and Cu–O(SO₃⁻) distances in (I) are remarkably similar to those in (II) and the Cu–O(carboxylate) and Cu–N distances in (I) are also close to those reported in one-dimensional bdc/1,10-phen/Cu²⁺ complexes, such as [Cu(bdc)(phen)], (III) (Sun *et al.*, 2001), [Cu₂(bdc)(phen)₂(N₃)₂], (IV) (Li *et al.*, 2001), and [Cu(bdc)(phen)(H₂O)](H₂O)(DMF), (V) (Zhu *et al.*, 2004). In

© 2004 International Union of Crystallography Printed in Great Britain – all rights reserved Received 15 November 2004 Accepted 23 November 2004 Online 30 November 2004

Figure 1

ORTEP-3 diagram (Farrugia, 1997) of (I), showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry code: (*) x, y - 1, z].

Figure 2

View of the one-dimensional chain of (I). H atoms have been omitted for clarity.

Figure 3

View of the one-dimensional hydrogen bonded ladder of (I). Hydrogen bonds are shown by dashed lines and the H atoms have been omitted for clarity.

(I), sb is in a bis-monodentate coordination mode, acting as a linker, and the Cu...Cu separation is 9.905 (1) Å, which is slightly longer than that in (II) [9.7495 (8) Å] and significantly shorter than those reported for one-dimensional bdc/1,10phen/Cu²⁺ complexes (about 11.0 Å). The dihedral angle between the planes of the sb ring and its carboxyl group is 14.8 (5)°, which is larger than that of (II) [4.0 (4)°]. The C1-O1 bond length [1.275 (3) Å] is longer than the C1-O2 distance [1.245 (3) Å], indicating more keto character in the latter. In (II), the two cis-arranged sb ligands around the copper center are exactly parallel and lead to a dimeric species, while in (I), two sb ligands around the copper center are arranged trans and give a one-dimensional chain the structure (Fig. 2). There is an intramolecular hydrogen bond between the water molecule and the uncoordinated carboxyl O atom (Table 2).

The coordinated water molecule forms a hydrogen bond with atom O3(1 - x, 1 - y, 1 - z) of an adjacent chain,

thereby creating a one-dimensional hydrogen-bonded ladder (Fig. 3). The shortest Cu···Cu separation between neighboring chains in the ladder is 7.5943 (8) Å. Moreover, 1,10-phenanthroline ligands between neighboring hydrogenbonded ladders are exactly parallel and exhibit π - π interaction with a distance of about 3.35 Å. From the above data, it is obvious that two sb ligands around the copper center in (I) and (II) are arranged *cis* and *trans*, respectively, and result in different assembly and extended hydrogen-bonded frameworks.

Experimental

A mixture of $Cu(NO_3)_2$ ·3H₂O (0.051 g, 0.21 mmol), potassium hydrogen 4-sulfobenzoate (0.053 g, 0.22 mmol), 1,10-phenanthroline (0.034 g, 0.17 mmol), and water (15 ml) was sealed in a 30 ml stainless steel reactor with a Teflon liner and heated to 423 K for 24 h. After cooling, blue block-shaped crystals of (I) were collected by filtration and washed with water.

Crystal data

 $[Cu(C_7H_4O_5S)(C_{12}H_8N_2)(H_2O)]$ Z = 2 $M_r = 461.92$ $D_{\rm r} = 1.784 {\rm Mg m}^{-3}$ Triclinic, P1 Mo $K\alpha$ radiation a = 9.6864 (13) ÅCell parameters from 7411 b = 9.9047 (14) Åreflections c = 10.8332 (15) Å $\theta = 4.0\text{--}56.6^\circ$ $\alpha = 66.933(2)^{\circ}$ $\mu = 1.44 \text{ mm}^{-1}$ T = 293 (2) K $\beta = 77.581 \ (2)^{\circ}$ $\gamma = 64.206 \ (2)^{\circ}$ Block, blue $V = 859.7 (2) \text{ Å}^3$ $0.45 \times 0.23 \times 0.21$ mm

3050 independent reflections

 $R_{\rm int}=0.013$

 $\theta_{\rm max} = 25.1^\circ$

 $h=-11\rightarrow 11$

 $k = -11 \rightarrow 11$

 $l = -12 \rightarrow 12$

2895 reflections with $I > 2\sigma(I)$

Data collection

Bruker SMART CCD area-detector diffractometer φ and ω scans Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996)

 $T_{\min} = 0.678, T_{\max} = 0.739$ 6272 measured reflections

Refinement

 Refinement on F^2 $w = 1/[\sigma^2(F_o^2) + (0.0452P)^2]$
 $R[F^2 > 2\sigma(F^2)] = 0.027$ $w = 1/[\sigma^2(F_o^2) + (0.0452P)^2]$
 $wR(F^2) = 0.075$ where $P = (F_o^2 + 2F_c^2)/3$

 S = 1.03 $(\Delta/\sigma)_{max} < 0.001$

 3050 reflections
 $\Delta\rho_{max} = 0.29 \text{ e Å}^{-3}$

 268 parameters
 $\Delta\rho_{min} = -0.35 \text{ e Å}^{-3}$

 H atoms treated by a mixture of independent and constrained refinement
 σ^2

Table 1

Selected geometric parameters (Å, °).

Cu1-O1	1.9452 (15)	Cu1-N2	2.0103 (17)
Cu1-O6	1.9636 (15)	Cu1-O5 ⁱ	2.2372 (15)
Cu1-N1	2.0084 (17)		
O1-Cu1-O6	94.51 (6)	N1-Cu1-N2	81.94 (7)
O1-Cu1-N1	91.12 (7)	O1-Cu1-O5 ⁱ	97.76 (7)
O6-Cu1-N1	173.99(7)	O6-Cu1-O5 ⁱ	91.45 (6)
O1-Cu1-N2	159.31 (7)	N1-Cu1-O5 ⁱ	89.85 (6)
O6-Cu1-N2	92.05 (7)	$N2-Cu1-O5^i$	101.66 (6)

Symmetry code: (i) x, y - 1, z.

metal-organic papers

Table 2	
Hydrogen-bonding geometry (Å, $^\circ).$	

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$\begin{array}{c} O6-H6A\cdots O3^{ii}\\ O6-H6B\cdots O2 \end{array}$	0.84 (1)	1.95 (1)	2.771 (2)	165 (3)
	0.84 (3)	1.73 (3)	2.551 (2)	163 (3)

Symmetry code: (ii) 1 - x, 1 - y, 1 - z.

H atoms bonded to C atoms were positioned geometrically and treated as riding, with C-H distances of 0.93 Å and $U_{iso}(H) = 1.2U_{eq}(\text{parent})$. The water H atoms were located in difference Fourier maps and refined with restraints for O-H distances [0.85 (1) Å] and with $U_{iso}(H) = 0.05 \text{ Å}^2$.

Data collection: *SMART* (Bruker, 1997); cell refinement: *SAINT* (Bruker, 1997); data reduction: *SAINT* and *SHELXTL* (Bruker, 1997); program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997); software used to prepare material for publication: *WinGX* (Farrugia, 1999).

This project was supported by the National Natural Science Foundation of China (No. 50073019).

References

- Bruker (1997). SMART (Version 5.044), SAINT (Version 5.01) and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
- Chisholm, M. H. (2003). J. Chem. Soc. Dalton Trans. pp. 3821-3828.
- Fan, S.-R., Xiao, H.-P., Zhang, L.-P. & Zhu, L.-G. (2004). Acta Cryst. E60, m1833–m1835.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Li, L. C., Liao, D. Z., Jiang, Z. H. & Yan, S. P. (2001). Polyhedron, 20, 681–684.
- Ohmura, T., Mori, W., Hiraga, H., Ono, M. & Nishimoto, Y. (2003). *Chem. Lett.* **32**, 468–469.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Starynowicz, P. (2000). J. Alloys Compd, 305, 117-120.
- Sun, D. F., Cao, R., Liang, Y. C., Shi, Q., Su, W. P. & Hong, M. C. (2001). J. Chem. Soc. Dalton Trans. pp. 2335–2340.
- Wang, W. G., Zhang, J., Song, L. J. & Ju, Z. F. (2004). Inorg. Chem. Commun. 7, 858–860.
- Xiong, R. G., Zhang, J., Chen, Z. F., You, X. Z., Che, C. M. & Fun, H.-K. (2001). J. Chem. Soc. Dalton Trans. pp. 780–782.
- Yaghi, O. M., O'Keeffe, M., Ockwig, N. W., Chae, H. K., Eddaoudi, M. & Kim. J. (2003). *Nature (London)*, **423**, 705–714.
- Yuan, R. X., Xiong, R. G., Xie, Y. L., You, X. Z., Peng, S. M. & Lee, G. H. (2001). Inorg. Chem. Commun. 4, 384–387.
- Zheng, S. L., Zheng, J. P., Chen, X. M. & Ng, S. W. (2003). J. Solid State Chem. 172, 45–52.
- Zhu, L. G., Xiao, H. P. & Lu, J. Y. (2004). Inorg. Chem. Commun. 7, 94-96.