Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Poly[[aqua(1,10-phenanthroline- $\left.\kappa^{2} N, N^{\prime}\right)$ $\operatorname{copper}($ II) $]-\mu$-4-sulfonatobenzoato- $\left.\kappa^{2} O^{4}: O^{1}\right]$

Sai-Rong Fan, ${ }^{\text {a }}$ Hong-Ping Xiao, ${ }^{\text {b }}$ Li-Ping Zhang, ${ }^{\text {a }}$ Guo-Qiang Cai ${ }^{\text {a }}$ and Long-Guan Zhu ${ }^{\text {a }}$
${ }^{\text {a }}$ Department of Chemistry, Zhejiang University, Hangzhou 310027, People's Republic of China, and ${ }^{\mathbf{b}}$ School of Chemistry and Materials Science, Wenzhou Normal College, Zhejiang Wenzhou 325027, People's Republic of China

Correspondence e-mail: chezlg@zju.edu.cn

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.027$
$w R$ factor $=0.075$
Data-to-parameter ratio $=11.4$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

The title compound, $\left[\mathrm{Cu}\left(\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{O}_{5} \mathrm{~S}\right)\left(\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{n}$, a polymeric copper(II) complex, was obtained by the reaction of $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}$ with potassium hydrogen 4 -sulfobenzoate and 1,10-phenanthroline under hydrothermal condition. Each $\mathrm{Cu}^{\mathrm{II}}$ atom displays a square-pyramidal geometry defined by three O atoms from one water molecule and two 4 -sulfonatobenzoate ligands and two N atoms from one 1,10-phenanthroline ligand. The polymeric chains are linked into ladders by $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds.

Comment

In the past decade, numerous 1,4-benzenedicarboxylate (bdc) complexes have been extensively studied due to their potential applications as functional materials (Yaghi et al., 2003; Ohmura et al., 2003; Chisholm, 2003). However, complexes with 4 -sulfobenzoate (sb), a ligand with a combination of sulfonate and carboxyl groups, remain few (Yuan et al., 2001; Xiong et al., 2001). The sulfonate group could exhibit very different coordination behavior compared to the carboxyl group (Zheng et al., 2003; Wang et al., 2004; Starynowicz, 2000). We report here a one-dimensional coordination polymer with the sb ligand, $\left[\mathrm{Cu}(\mathrm{sb})(1,10-\mathrm{phen})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{n}(1,10-$ phen is 1,10 -phenanthroline), (I).

(I)

The Cu atom in (I) has a square-pyramidal geometry defined by one O atom from one water molecule, two N atoms from one 1,10-phenanthroline ligand, and two O atoms from two sb ligands. Atoms O1, O6, N1, and N2 occupy the basal plane, while atom OF^{i} [symmetry code: (i) $x, y-1, z$] occupies the apical position (Fig. 1 and Table 1). The coordination geometry of (I) is similar to that of $\left[\mathrm{Cu}(\mathrm{sb})\left(2,2^{\prime} \text {-bipy }\right)\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{2}$, (II) (Fan et al., 2004). The $\mathrm{Cu}-\mathrm{O}$ (carboxylate), $\mathrm{Cu}-\mathrm{N}$, and $\mathrm{Cu}-\mathrm{O}\left(\mathrm{SO}_{3}{ }^{-}\right)$distances in (I) are remarkably similar to those in (II) and the $\mathrm{Cu}-\mathrm{O}$ (carboxylate) and $\mathrm{Cu}-\mathrm{N}$ distances in (I) are also close to those reported in one-dimensional bdc/1,10phen $/ \mathrm{Cu}^{2+}$ complexes, such as $[\mathrm{Cu}(\mathrm{bdc})($ phen $)]$, (III) (Sun et al., 2001), $\left[\mathrm{Cu}_{2}(\mathrm{bdc})(\mathrm{phen})_{2}\left(\mathrm{~N}_{3}\right)_{2}\right]$, (IV) (Li et al., 2001), and $\left[\mathrm{Cu}(\mathrm{bdc})(\mathrm{phen})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]\left(\mathrm{H}_{2} \mathrm{O}\right)(\mathrm{DMF}),(\mathrm{V})(\mathrm{Zhu}$ et al., 2004). In

Received 15 November 2004 Accepted 23 November 2004 Online 30 November 2004

Figure 1
ORTEP-3 diagram (Farrugia, 1997) of (I), showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry code: $\left.\left({ }^{*}\right) x, y-1, z\right]$.

Figure 2
View of the one-dimensional chain of (I). H atoms have been omitted for clarity.

Figure 3
View of the one-dimensional hydrogen bonded ladder of (I). Hydrogen bonds are shown by dashed lines and the H atoms have been omitted for clarity.
(I), sb is in a bis-monodentate coordination mode, acting as a linker, and the $\mathrm{Cu} \cdots \mathrm{Cu}$ separation is 9.905 (1) \AA, which is slightly longer than that in (II) $[9.7495$ (8) \AA] and significantly shorter than those reported for one-dimensional bdc/1,10phen $/ \mathrm{Cu}^{2+}$ complexes (about $11.0 \AA$). The dihedral angle between the planes of the sb ring and its carboxyl group is $14.8(5)^{\circ}$, which is larger than that of (II) [4.0 (4) ${ }^{\circ}$]. The C1O1 bond length $[1.275(3) \AA$] is longer than the $\mathrm{C} 1-\mathrm{O} 2$ distance $[1.245$ (3) \AA], indicating more keto character in the latter. In (II), the two cis-arranged sb ligands around the copper center are exactly parallel and lead to a dimeric species, while in (I), two sb ligands around the copper center are arranged trans and give a one-dimensional chain the structure (Fig. 2). There is an intramolecular hydrogen bond between the water molecule and the uncoordinated carboxyl O atom (Table 2).

The coordinated water molecule forms a hydrogen bond with atom $\mathrm{O} 3(1-x, 1-y, 1-z)$ of an adjacent chain,
thereby creating a one-dimensional hydrogen-bonded ladder (Fig. 3). The shortest $\mathrm{Cu} \cdots \mathrm{Cu}$ separation between neighboring chains in the ladder is 7.5943 (8) \AA. Moreover, 1,10phenanthroline ligands between neighboring hydrogenbonded ladders are exactly parallel and exhibit $\pi-\pi$ interaction with a distance of about $3.35 \AA$. From the above data, it is obvious that two sb ligands around the copper center in (I) and (II) are arranged cis and trans, respectively, and result in different assembly and extended hydrogen-bonded frameworks.

Experimental

A mixture of $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}(0.051 \mathrm{~g}, 0.21 \mathrm{mmol})$, potassium hydrogen 4 -sulfobenzoate $(0.053 \mathrm{~g}, 0.22 \mathrm{mmol}), 1,10$-phenanthroline $(0.034 \mathrm{~g}, 0.17 \mathrm{mmol})$, and water $(15 \mathrm{ml})$ was sealed in a 30 ml stainless steel reactor with a Teflon liner and heated to 423 K for 24 h . After cooling, blue block-shaped crystals of (I) were collected by filtration and washed with water.

Crystal data

$\left[\mathrm{Cu}\left(\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{O}_{5} \mathrm{~S}\right)\left(\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$
$M_{r}=461.92$
Triclinic, $P \overline{1}$
$a=9.6864$ (13) A
$b=9.9047$ (14) \AA
$c=10.8332(15) \AA$
$\alpha=66.933(2)^{\circ}$
$\beta=77.581(2)^{\circ}$
$\gamma=64.206(2)^{\circ}$
$V=859.7(2) \AA^{3}$

$$
\begin{aligned}
& Z=2 \\
& D_{x}=1.784 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation }
\end{aligned}
$$

Cell parameters from 7411 reflections
$\theta=4.0-56.6^{\circ}$
$\mu=1.44 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Block, blue
$0.45 \times 0.23 \times 0.21 \mathrm{~mm}$

Data collection

Bruker SMART CCD area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
$T_{\min }=0.678, T_{\max }=0.739$
6272 measured reflections

> 3050 independent reflections
> 2895 reflections with $I>2 \sigma(I)$
> $R_{\text {int }}=0.013$
> $\theta_{\max }=25.1^{\circ}$
> $h=-11 \rightarrow 11$
> $k=-11 \rightarrow 11$
> $l=-12 \rightarrow 12$

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0452 P)^{2} \\
&+0.4913 P] \\
& \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.29 \mathrm{e}^{-3} \\
& \Delta \rho_{\min }=-0.35 \mathrm{e}^{-3}
\end{aligned}
$$

metal-organic papers

Table 2
Hydrogen-bonding geometry ($\mathrm{A},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O6-H6A $\mathrm{HO}^{\mathrm{ii}}$	$0.84(1)$	$1.95(1)$	$2.771(2)$	$165(3)$
O6-H6B \cdots O2	$0.84(3)$	$1.73(3)$	$2.551(2)$	$163(3)$

Symmetry code: (ii) $1-x, 1-y, 1-z$.
H atoms bonded to C atoms were positioned geometrically and treated as riding, with $\mathrm{C}-\mathrm{H}$ distances of $0.93 \AA$ and $U_{\text {iso }}(\mathrm{H})=$ $1.2 U_{\text {eq }}$ (parent). The water H atoms were located in difference Fourier maps and refined with restraints for $\mathrm{O}-\mathrm{H}$ distances $[0.85$ (1) \AA] and with $U_{\text {iso }}(\mathrm{H})=0.05 \AA^{2}$.

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT and SHELXTL (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

This project was supported by the National Natural Science Foundation of China (No. 50073019).

References

Bruker (1997). SMART (Version 5.044), SAINT (Version 5.01) and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
Chisholm, M. H. (2003). J. Chem. Soc. Dalton Trans. pp. 3821-3828.
Fan, S.-R., Xiao, H.-P., Zhang, L.-P. \& Zhu, L.-G. (2004). Acta Cryst. E60, m1833-m1835.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Li, L. C., Liao, D. Z., Jiang, Z. H. \& Yan, S. P. (2001). Polyhedron, 20, 681-684.
Ohmura, T., Mori, W., Hiraga, H., Ono, M. \& Nishimoto, Y. (2003). Chem. Lett. 32, 468-469.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Starynowicz, P. (2000). J. Alloys Compd, 305, 117-120.
Sun, D. F., Cao, R., Liang, Y. C., Shi, Q., Su, W. P. \& Hong, M. C. (2001). J. Chem. Soc. Dalton Trans. pp. 2335-2340.
Wang, W. G., Zhang, J., Song, L. J. \& Ju, Z. F. (2004). Inorg. Chem. Commun. 7, 858-860.
Xiong, R. G., Zhang, J., Chen, Z. F., You, X. Z., Che, C. M. \& Fun, H.-K. (2001). J. Chem. Soc. Dalton Trans. pp. 780-782.

Yaghi, O. M., O'Keeffe, M., Ockwig, N. W., Chae, H. K., Eddaoudi, M. \& Kim. J. (2003). Nature (London), 423, 705-714.

Yuan, R. X., Xiong, R. G., Xie, Y. L., You, X. Z., Peng, S. M. \& Lee, G. H. (2001). Inorg. Chem. Commun. 4, 384-387.

Zheng, S. L., Zheng, J. P., Chen, X. M. \& Ng, S. W. (2003). J. Solid State Chem. 172, 45-52.
Zhu, L. G., Xiao, H. P. \& Lu, J. Y. (2004). Inorg. Chem. Commun. 7, 94-96.

